
JOURNAL OF COMPUTATIONAL PHYSICS 29, 357-369 (1978) 

Summary Value Smoothing of Physical 

Time Series with Unequal Intervals 

BRUCE A. BOLT 

Seismographic Station, University of Califurnia, Berkeley, California 

Received January 11, 1978 

An algorithm SUMMOOTH for smoothing raw observations that are unequally spaced 
is explained. The process generalizes the method of summary values introduced into geo- 
physics by H. Jeffrey% Smoothed data points, defined as the intersection of the local linear 
and parabolic least-squares fits, are computed for overlapping intervals rather than fixed 
sequential intervals as in previous work. A new feature is the parallel computation of 
(smoothed) summary gradients, essential for the Herglotz velocity integration. The interval 
selection is objective because the position of the smoothed values at each stage depends 
only on the spacing of the raw sample points. Selection of the starting interval can be made 
objective by addition of a principle, such as symmetry, or a rule, such as the fitted local 
curvature must never exceed a fixed value. In practice, selection should employ a trade-off 
curve between resolution and variance. An advantage of the process is that uncertainties 
at the summary points are independent. A comparison is given, for scarce data of Mossbauer 
spectra, with the smoothing method of Tahni and Gilat. Application to ragged time series 
for vs)/vB observations in earthquake prediction studies and to the construction of seis- 
mological travel-time curves illustrates the value of the method in geophysics. 

1. INTRODUCTION 

The related processes of smoothing, trend elimination, and interpolation [I] still 
cause difficulties in the treatment of observed time series. Standard smoothing methods 
only apply precisely to equally-spaced samples and unequally-spaced data produce 
unknown fluctuating correlations between the estimated parameters [2] Thus, in 
both the usual least-squares curve fitting, such as cubic splines, and the operation of a 
running mean, fluctuations in the data density along the time axis introduce essentially 
varying weights of undetermined magnitude. Further, the smoothed points have, in 
general, covariances of significant magnitudes. 

Although the problem arises in all fields of data processing, many important 
illustrations are found in physics and geophysics. In seismology, for example, the 
most common requirement [3] has been the smoothing of observed travel times T of 
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seismic waves as a function of transmission distance d. In order to derive the corre- 
sponding velocities along the path, an inverse functional that contains derivatives 
dT/dA is used. Thus, subjective selection of a smoothing process often determines the 
form of the velocity variation. More recently, physical parameters associated with 
earthquake occurrence have been plotted against time in an attempt to detect trends 
which might be forerunners of impending major earthquakes [4]. Here, subjectivity 
in the smoothing procedures can introduce fallacious inferences because the 
prediction is made from the form of the smoothed series at the (most recent) end of 
the range. 

The method explained in this paper is based on the method of summary values 
developed by Jeffreys [5] in a seismological context. The method applies to both dense 
and scarce data in the presence of random errors when no definite functional form is 
known. In such cases it must be suspected a priori that the form of the curve changes 
radically from one end of the range to the other. In other words, a smoothed value 
must be obtained from the observations in its immediate neighborhood rather than 
over the whole range as is often done with disastrous consequences in primitive least- 
squares curve fitting. As previously formulated, the method of summary values simply 
selects a convenient subrange as standard interval. Linear and quadratic forms are 
then fitted by least squares in each interval. The summary points are the intersections 
of the two curves which, of course, may always be computed. At each such point it 
may be shown that the uncertainties of the estimated values are independent [6]. The 
summary points, therefore, not only give the linear trend in each range, but also take 
account of the local parabolic curvature. 

Summary value smoothing is also a valuable tool in estimation of the smooth 
gradients (or derivative curve) of the time series. The argument, apparently previously 
overlooked, is as follows: The summary linear trend in an interval is the slope of the 
linear form. However, this slope should be taken not at the midpoint of the sample 
interval but midway between the summary points. At this abscissa, the slope of the 
linear and the quadratic forms coincide so that at this point the slopes of both the 
linear trend and the curvature are summarized. 

In past application, the choice of intervals has been largely arbitrary; generally 
these successive subranges have been taken of equal length. In this paper. the power 
of the method is generalized so that the computer selects each subrange according 
to rules which take account of the density of data points and variations in local curva- 
ture. A useful decision procedure that may be new to the theory of smoothing is to 
calculate a subsidiary curve showing the variation of the uncertainty of the summary 
ordinates with number of data points in the first interval. An optimum selection can be 
made by a trade-off rule [7]. The algorithm then successively computes a series of 
summary value pairs, with unequal spacing, that provide a representation of the 
original time series. Noise in the observed values can be treated by the application 
of weights, chosen to yield stable and robust statistical estimates [8, 91. 

The generalized process described here has been tested in a number of applications. 
It proves to be computationally straightforward and not unduly time consuming, if 
handled on an efficient program and computer. 
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2. MATHEMATICAL FORMULATION 

Consider n 3 4 points (xi , yi) of equal weight in an interval of the argument. Let 
the pair of summary points in the interval be (X, , Y,) and (X2, Y&. The linear 
leastsquares fit to the data points, passing through the summary points, is 

The normal equations for the ordinates are 
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The quadratic least-squares fit to the data points, also passing through the summary 
points, is 
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It follows immediately, when Eqs. (2) are substituted into the first two equations of 
(4), that 

and 

AZ(Xi - X,)(Xi - X2)2 = 0 (5) 

AC(X~ - X,)Z(Xi - X2) = 0, (6) 

from which X1 and X2 can be determined. 
In particular, subtracting (5) and (6) yields 

qxi - X,)(Xi - X2) = 0. (7) 

- I; and put Z.$” = np2 , Let Zx, = n%, f  = x - .f, [I = Xl - I, t2 = X2 - 

.Zt3 = np3, summed over n data points. 
It then follows by substitution that f1 , &, are the roots of the quadratic 

t2 - (tL2lPZP - P2 = 0. (8) 

Hence we can compute X1 and X2 and the corresponding ordinates follow by 
inverting the matrix (2). 

More generally, each point is associated with a weight Wi = a2/gi2, where o2 is 
the variance of a yi sample value of unit weight. The weights can be introduced in 
appropriate places in the above equations. In the usual way, if we operate on (2) with 
the variance operator, we find 

and 

(9) 

Also, calculation yields cov( Y, , Y,) = 0, so that the summary points have the special 
property that the uncertainties of their ordinates are uncorrelated. 

The summary gradient for the interval in question is, from (l), 

4Jldx = v2 - yxx2 - Xl) (11) 

and the corresponding abscissa is x = (X1 + X2)/2. 
Because the covariance vanishes, the variance of the gradient is simply (var Y, + 

var Y,)/(X, - X,)2 = P/(X2 - X,)2 (say). 
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3. DESCRIPTION OF THE NUMERICAL PROCEDURE 

Several programs were written to compute summary values using the above algo- 
rithms. For the essentials, consider a single version with options, called SUMMOOTH, 
for accomplishing solutions of (8) and (2). It includes an option for computing (8), 
(2), and the gradient (11). 

Initially, let the first interval INT for the number of sample points be fixed such 
that X1 < Xi < XINT . The program then computes the pair of summary values for 
this range of X. By means of a program loop the first point at x1 is then discarded 
and the next point at XINT+~ is added; another pair of summary points is calculated 
for the new interval and so on. INT thus defines a sample window of fixed width 
which moves along the time series until the terminal point at x, is reached. In this 
case, the summary pairs are at unequal values of the argument and, in general, 
overlap. They may be printed or plotted to provide a set of smoothed values to replace 
the original raw series xi . 

It was found that, for convenience in this computation mode, only a subset of 
smooth values need be printed or plotted. The rule adopted was to have the window 
move forward until the trailing summary value of the current pair had an abscissa 
equal to that of the point midway between the pair previously adopted. The resulting 
set of points representing the original time series usually represented satisfactorily 
the main fluctuations in the series but filtered out the highest frequencies (see, for 
example, Fig. 1). 

At this stage, the smoothing is a function of INT which has been arbitrarily selected. 
In practice, several runs can be made for a sequence of values of INT and the appro- 
priate set of smoothed values then selected (perhaps based upon the number of 
points needed or the size of the variances associated with the summary values). This 
subjectivity (i.e., arbitrariness in INT) can be removed in a number of ways. One 
procedure is to adopt a principle of symmetry and by repetitive computation with a 
sequence of values of INT select a value of INT such that the resulting sets of smoothed 
values are approximately equal (say in a least-squares sense) whether the window 
moves from the left (x1 , x2 ,...) or the right (x, , x,-~ ,... ). 

After numerical experimentation, another procedure was adopted as an option in 
SUMMOOTH as a selection rule. In this case, the principle of selection was based 
upon the simultaneous minimization of INT and the variance of the ordinates (9) and 
(10) or the gradient (11). In many cases, it was found that, at least for time series 
with variances u2 roughly stationary as a function of xi , the longer the width of the 
interval summarized the smaller the average value of (var Y1 + var Y&(X2 - X,)z, 
In other words, the trade-off curve between these quantities was roughly a rectangular 
hyperbola. The point on this curve nearest to the origin was selected automatically as 
defining the optimal summary interval width. An example of the use of this principle 
is give in Section 5. 

Finally, an option was tested that provided for smoothing with a moving interval 
window of variable width. The computation of INT (x) was done by requiring that 
the variance of an observation be maintained constant for every pair of summary 
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FIG. 1. Time series with unequal intervals for a Mosshauer spectra. The upper plot shows the 
raw data with large dispersion. The center plot shows the top data smoothed using the summary 
value method with a moving window of fixed width with 20 data points. The bottom plot is the 
experimental spectrum obtained with finer instrumental setting. 
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points. The programmed method proceeded by successive trials and was relatively 
time consuming. It does, however, help deal with the problem of variation in sampling 
density in the original time series. 

The first test of SUMMOOTH was carried out on the same scarce and noisy data 
used by Talmi and Gilat [lo]. The points are samples from a Mossbauer spectrum 
experiment. The aim of these authors was to show how well their smoothing algorithm, 
using special functions, filtered the noise and detected the true experimental features 
in such a case. In Fig. 1, results with the summary value method for just one set of the 
spectral data are displayed. At the top are the original noisy data; in the center is the 
smoothed variation using the simple unweighted version of the summary point algo- 
rithm. At the bottom is the spectrum published by Talmi and Gilat for a data sample 
measured with less dispersion. It is evident that the method of summary values has 
resolved the fine structure of the spectrum closely. 

The details are as follows. The raw time series consisted of 460 widely scattered 
points at unequal values of the argument. A sequence of initial intervals was used 
(INT = 5, 8, 10, 15, 20) with SUMMOOTH to generate, from the unweighted 
data, tables of summary values. The case reproduced for comparison in Fig. 1 had 
INT = 20 and plotted points were selected by the bisection criterion described 
above. The points in Fig. 1 have been simply joined by straight lines. The method has 
successfully resolved the two spectral lines although some noise remains having various 
periodicities. Comparison with the three smoothed spectra for this data published by 
Talmi and Gilat shows that the smoothing achieved by the above simple application 
has produced a spectrum of about the same quality as their best case [lo, Fig. 3, 
weight = I]. The present method also tabulates the standard errors of the ordinates 
(not plotted) using (9) and (10). 

4. EARTHQUAKE PREDICTION 

In recent years it has been proposed that sometimes earthquakes are preceded by 
changes in the physical properties of the rock in the vicinity of the earthquake source 
[4]. These precursory changes cause the velocity of seismic waves to vary; in particular, 
the longitudinal P wave velocity v, might decrease by up to 15 “/, in a period of 
months or years before moderate to large earthquakes. 

The observational analysis is simply to plot the difference in time of arrival of S and 
P waves (ts - t9) at a station from a source against the time of arrival of P (tp). The 
slope of the curve (usually nearly linear) is t,/t, - 1, which gives at once ts/tp and 
hence up/v, , the ratio of the apparent mean P to S velocity. In a region of concern, the 
stations and earthquake sources would usually be chosen so that the waves passed 
through theregion. Becausethe occurrence of earthquakes is irregular, theresulting time 
series of vJv, values is at unequal intervals of time. Further, because of difficulties 
in selection of corresponding P and S phases on the seismograms, and errors in the 
location of the sources, the resulting t,/tp (or v,/vJ values are subject to considerable 
errors of observation. Some rejection and weighting scheme is almost inevitable. 
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A typical display of the v,/v, time-series is graphed in Fig. 2a. The points are from 
individual earthquakes, which of course, do not occur at equal intervals of time. Such 
a time series might already be the result of a bandpass filter or rejection law. The 
sometimes crucial effect of this process is ignored here. The data used are based on 
various published time series of this type for earthquakes in California, Japan, and 
the USSR [I I]. An overall interval of 4 years is used. The question then is: Are there 
any anomalous intervals defined by dips or bays in the v,/v, curves ? If there are, a 
common prediction hypothesis states that (i) the time width of the bay is proportional 
to the magnitude of the impending earthquake, and (ii) the impending earthquake 
will occur shortly after the return of the IJ&, values to their normal range. 

1.6 c 4 

1.5 t, , , , , , , , , 1, ( , , , , , , , 1 , , , , , , ,, , 1, , ,, , , ,, ,-j 

1972 1973 1974 1975 

FIG. 2. A comparison of a time-series of v,/v, ratios for 4 years. Note that the ordinate scale 
changes between (a) and (b) and (c). Series (a) is the raw data with sparse and dense sections. Series 
(b) is the raw data after standard smoothing by a running mean. At the bottom (c) two smoothed 
series are shown using SUMMOOTH. The continuous line is from a window with 20 data points; 
the dotted line is from a window with 30 points. 

First, consider the effect of smoothing the time series by a running mean. Let yi 
be the ith raw value of up/v, , and si be the corresponding smoothed value. The smooth- 
ing formula 

si = A f (1 - A)k y&K (12) 
k=O 
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is sometimes used. With A = 0.1, for ‘example, the smoothed values are broad 
nonsymmetrical averages using moderately weighted adjacent values effectively 
extending out to 5 or 6 sequential positions. 

The time series Si , smoothed using (12), is drawn in Fig. 2b. It is clear that the 
unevenly spaced data have given rise to fluctuations of small amplitude in the smoothed 
curve. From a naive point of view, the bay of 12 months’ duration beginning in early 
1974 might be interpreted as significant. It is unclear, however, how to apply any 
objective significance test using the above methodology. 

Let us now compare the above treatment with a smoothing using the summary 
value algorithm. We have 220 points (xi , vi) as shown in Figure 2a. Program SUM- 
MOOTH was used to compute summary values for a sequence of values of INT. 
Resolution of the longer period fluctuations, similar to that obtained in Fig. 2b 
using (12), was found with INT = 20. Summary points selected by the midpoint 
method for this case are shown as a continuous line in Fig. 2c. For visualization 
only, the 50 summary points have been joined by straight line segments. The rather 
close resemblance of Figs. 2b and c is evident. 

For comparison, the 38 points in Fig. 2c joined by dotted lines are every tenth pair 
of summary points calculated by SUMMOOTH with a moving window of width 
INT = 30. The effect of summarizing both the linear and parabolic trends over a 
wider interval can be clearly seen. 

It is of interest in this case to examine explicitly the variances of the summary 
points from (9) and (10). The numerical values for INT = 20 are listed in Table I. 
The values of the standard errors given under the third column are calculated putting 
wi = 1, all i. These values, of course, are not independent of each other as ordered in 
Table I. Only the variances of each pair of summary values located in the table at 
(X1 , X,>, (X, , X,), X, , X,), etc., are uncorrelated. The largest s.e. is Y, f 0.52 and 
the smallest is Ya2 & 0.24. A representative value is 0.30. It will be seen from the 
vertical scale in Fig. 2 that the fluctuations in the smoothed series are well within 
these bounds so that the significance of the remaining deviations is doubtful. 

5. SUMMARY VALUE TRAVEL-TIME GRADIENTS 

As an illustration of use of the algorithm to compute directly a set of summary 
gradients (derivatives) from a time series, numerical analysis was done using (1 l), on 
a table of published empirical seismological travel-time curves. The values used are 
from the 1968 Seismological Tables for P waves [12]. A travel-time yi (seconds) is 
given for each distance, in angular degrees, xi tabulated at 20” (1”) 104”. 

It was in this context that Jeffreys first applied the method of summary values [3] 
but the present procedure is quite different. Jeffreys used the method (with consecutive 
adjacent intervals of fixed width) to obtain a smoothed set of summary travel times 
from the raw measurements. Because the resulting summary times were unequally 
spaced, he then interpolated them to equal intervals. Only then were the gradients 
(dy/dx) found using divided differences. But (11) allows the optimal gradient to be 



TABLE I 

Smoothed v,/L~, Series (Int = 20) 

SE 

1972.39 1.76 .52 
1972.62 1.57 .46 
1972.79 1.72 .24 
1972.81 1.81 .36 
1972.82 1.75 .25 
1972.88 1.72 .30 
1972.90 1.68 .28 
1972.91 1.71 .27 
1972.93 1.70 .33 
1972.98 1.74 .32 
1973.03 1.73 .37 
1973.10 1.74 .38 
1973.15 1.74 .30 
1973.19 1.76 .30 
1973.21 1.76 .27 
1973.25 1.73 .34 
1973.27 1.74 .32 
1973.31 1.84 .37 
1973.33 1.77 -29 
1973.35 1.79 .25 
1973.36 1.76 .27 
1973.40 1.66 .37 
1973.42 1.66 .44 
1973.44 1.72 .33 
1973.47 1.72 .27 
1973.48 1.72 .30 
1973.49 1.73 .30 
1973.52 1.71 .28 
1973.54 1.64 932 
1973.57 1.70 .32 
1973.60 1.74 .35 
1973.64 1.75 .31 
1973.68 1.76 .30 
1973.71 1.71 -28 
1973.73 1.66 .31 
1973.79 1.68 .29 
1973.83 1.68 .36 
1973.90 1.67 .30 
1973.96 1.68 .34 
1974.07 1.79 .38 

1974.16 1.79 .33 
1974.23 I .72 .24 
1974.26 1.71 .27 
1974.41 1.56 .36 
1974.54 1.57 SO 

1974.76 1.66 .31 
1974.87 1.69 .28 
1974.98 1.66 .28 
1975.05 1.67 .31 
1975.19 1.72 .31 
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TABLE 2 

Summary Gradients of the 1968 Travel-Time Curve 

Distance 

(Xi) 

Summary 
gradient 

(AY:Ax) 

Interpolated 
gradient 

27.5 9.0752 8.9704 
32.5 8.7713 8.7699 
36.5 8.5357 8.5417 
40.5 8.2631 8.2690 
44.5 7.9904 7.9916 
48.5 7.6992 7.6907 
52.5 7.4042 7.4028 
56.5 7.1071 7.1150 
60.5 6.8364 6.8281 
64.5 6.5677 6.5685 
68.5 6.2890 6.2985 
12.5 5.9815 5.9723 
16.5 5.6746 5.6821 
80.5 5.3650 5.3649 
84.5 5.0359 5.0198 
88.5 4.7833 4.7598 
92.5 4.6372 4.6293 
96.5 4.5713 4.5702 

calculated for each summary interval without intervening interpolation. This method 
was used on the above tables with a sequence of values for TNT using SUMMOOTH 
as before. The resulting summary gradients (giving each observation unit weight) are 
listed in Table II for INT = 10. The values differ in the second decimal place with 
the corresponding gradients given in column 3, calculated by differencing the P tables 
[12]. Because the gradients are used for determining the velocity in the Earth from 
numerical inversion of the Herglotz-Abel integral, small systematic errors in the 
gradient estimates may be important. Thus the present method would appear to offer 
advantages over the previous one. 

Finally, in Fig. 3, the quantity V for the summary gradient, assuming unit variance 
for an observation of unit weight, is plotted for each value of INT adopted. (In this 
example, because the xi are at equal intervals and each point has the same weight, the 
variance for every summary gradient is equal for a fixed INT.) As discussed in 
Section 3, the result is a trade-off curve that can be used to select a value for the inter- 
val width INT. The desirable corner position (for the units used here) corresponds 
to about INT = 9 and V = 0.6 (seconds). In this application of the trade-off curve, 
the ordinate can be thought of as proportional to the amount of smoothing and in- 
versely proportional to the resolution of fine detail in the time series. It should be 
noticed that this use (like many others) of the trade-off algorithm is not dimension- 
free; a change in the scale of the abscissa (i.e. V) yields a different INT. If the trade- 
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FIG. 3. A trade-off curve of the number of data points (INT) in the summary interval versus the 
quantity V. The computed 5 points are from the calculation of summary gradients of the unsmoothed 
1968 seismological P times. 

off curve is assumed to be a true rectangular hyperbola, then if V is always scaled to 
achieve the standard form of the rectangular hyperbola, a more objective rule is 
obtained. 

6. CONCLUSION AND OUTLOOK 

Availability of high-speed computers allows the generalization of a smoothing 
algorithm, called the method of summary values, devised by H. Jeffreys. Rather than 
subdividing, in a subjective way, the original time series into adjoining intervals and 
then summarizing the data in each cell by a pair of summary points, the present 
algorithm computes summary values for overlapping intervals according to prespeci- 
fied selection rules or general principles. 

Tests of a program that generates the smoothed values demonstrate the advantages 
and disadvantages of the new method. The time series need not be at equal intervals 
of the argument and variations in sample density may be automatically allowed for 
by a requirement on the constancy of the variances of the summary ordinates. When 
the width of the moving interval window is plotted against these variances, the result- 
ing trade-off curve gives a rule for selection of the optimum resolution of periodicities 
in the time series. 
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An extension of the original derivation of the method of summary values gives a 
simple formula for the direct estimation of the summary gradient within the summary 
interval together with its variance. These formulas may find considerable application 
in the construction of revised seismological traveltime slowness and attenuation 
curves as well as the determination of seismic velocity distributions. 
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